## Taber Abrasion, Impact and Contact Angle testing of

### Vitolane® coatings

Vitolane® is an affordable method of manufacturing silsesquioxanes (R-Si- $O_{1.5}$ ) with different functionalities.

These organic-inorganic hybrid resins can be added to coatings, adhesives and bulk polymers to enhance material properties such as improved abrasion resistance, increase resistance to solvents and better barrier properties.



# R = functional group, which may be the same or may be different. For Vitolane AZ, R is alternating n-propyl and methacrylate functional groups on each silsesquioxane cage molecule

This report describes the tests done on a coating in which an ingredient has been replaced by Vitolane A and Vitolane AZ. The coatings are deposited by bar coating with thickness of  $100\mu m$  and are cured by UV. The coatings are subjected to Taber testing, impact testing and contact angle.

Objective: To produce a chemical which improves the combined properties of increased wear resistance and adhesion, and low surface energy, suitable for wind turbine blade coatings.

#### 1. Vitolane® formulations

Each of the formulations contains a number of ingredients. These are:

| Code        | Name                                      | Role                                                                     |
|-------------|-------------------------------------------|--------------------------------------------------------------------------|
| CN132       | Aliphatic epoxy diacrylate                | Very low viscosity, high<br>reactivity, excellent chemical<br>resistance |
| SR454       | Triacrylate monomer                       | High chemical resistance and<br>low viscosity                            |
| SR9003      | Diacrylate monomer                        | Good wetting properties and<br>good flexibility                          |
| SR494       | Tetrafunctional monomer                   | High reactivity and good scratch resistance                              |
| Vitolane A  | Methacrylate functional oligomer          | To improve cross-link density<br>and abrasion resistance                 |
| Vitolane AZ | Methacrylate/n-propyl functional oligomer | To cross-link and reduce<br>surface energy                               |
| 184         | Photoinitiator                            | Cure catalyst                                                            |
| BP          | Photoinitiator                            | Cure catalyst                                                            |

**Table 1**: Description of the ingredients comprising the formulation of the coatings.

The specific formulations are:

|         |       | Formulation (wt %) |                |       |       |        |     |    |  |  |  |  |  |  |  |
|---------|-------|--------------------|----------------|-------|-------|--------|-----|----|--|--|--|--|--|--|--|
| Name    | SR494 | Vitolane A         | Vitolane<br>AZ | CN132 | SR454 | SR9003 | 184 | BP |  |  |  |  |  |  |  |
| 21116/A | 9     | 0                  | 0              | 27    | 27    | 27     | 5   | 5  |  |  |  |  |  |  |  |
| 21116/B | 6     | 3                  | 0              | 27    | 27    | 27     | 5   | 5  |  |  |  |  |  |  |  |
| 21116/C | 3     | 6                  | 0              | 27    | 27    | 27     | 5   | 5  |  |  |  |  |  |  |  |
| 21116/D | 0     | 9                  | 0              | 27    | 27    | 27     | 5   | 5  |  |  |  |  |  |  |  |
| 21116/E | 0     | 0                  | 9              | 27    | 27 27 |        | 5   | 5  |  |  |  |  |  |  |  |
| 21116/F | 0     | 15                 | 0              | 25    | 25    | 25     | 5   | 5  |  |  |  |  |  |  |  |
| 21116/G | 0     | 20                 | 0              | 23.3  | 23.3  | 23.3   | 5   | 5  |  |  |  |  |  |  |  |
| 21116/H | 0     | 25                 | 0              | 21.7  | 21.7  | 21.7   | 5   | 5  |  |  |  |  |  |  |  |
| 21116/I | 0     | 30                 | 0              | 20    | 20    | 20     | 5   | 5  |  |  |  |  |  |  |  |
| 21116/J | 0     | 0                  | 15             | 25 25 |       | 25     | 5   | 5  |  |  |  |  |  |  |  |
| 21116/K | 0     | 0                  | 20             | 23.3  | 23.3  | 23.3   | 5   | 5  |  |  |  |  |  |  |  |
| 21116/L | 0     | 0                  | 25             | 21.7  | 21.7  | 21.7   | 5   | 5  |  |  |  |  |  |  |  |
| 21116/M | 0     | 0                  | 30             | 20    | 20    | 20     | 5   | 5  |  |  |  |  |  |  |  |

#### **Table 2**: Formulation of the 13 coatings.

The control coating is A. For all the others the ingredient SR494 has being replaced by Vitolane A or Vitolane AZ. Vitolane A is a silsesquioxane with a methacrylate, which give to the coating the property to be cured. Vitolane AZ is composed of a methacrylate group and an n-propyl group. This second group gives to the coating the property to decrease the surface energy.

#### **Taber Wear Testing**

|   | (Taber Wear<br>Index) | Deviation |
|---|-----------------------|-----------|
| Α | 1.9                   | 0.62      |
| В | 2.7                   | 1.38      |
| С | 3.9                   | 0.37      |
| D | 16.9                  | 0.76      |
| E | 0.8                   | 0.53      |
| J | 3.4                   | 1.00      |
| К | 1.8                   | 1.45      |
| L | 3.6                   | 2.00      |
| М | 2.1                   | 0.84      |

calculated with the loss of weight during the abrasion experiments and the deviation of the results comparing to the average.



**Coating's formulation Fig.1**: Graphical representation of the Average Taber wear index for each coating formulation, and the deviation.

#### Impact Testing

| Coating | Average<br>Impact<br>force<br>(g.m) | Deviation<br>(g.m) |  |  |  |  |
|---------|-------------------------------------|--------------------|--|--|--|--|
| Α       | 387                                 | 36                 |  |  |  |  |
| В       | 390                                 | 7                  |  |  |  |  |
| С       | 307                                 | 9                  |  |  |  |  |
| D       | 273                                 | 18                 |  |  |  |  |
| E       | 283                                 | 16                 |  |  |  |  |
| F       | 213                                 | 16                 |  |  |  |  |
| G       | 197                                 | 11                 |  |  |  |  |
| Н       | 137                                 | 51                 |  |  |  |  |
| I       | 110                                 | 33                 |  |  |  |  |
| J       | 240                                 | 40                 |  |  |  |  |
| К       | 293                                 | 36                 |  |  |  |  |
| L       | 233                                 | 24                 |  |  |  |  |
| М       | 293                                 | 31                 |  |  |  |  |

<u>**Table 4**</u>: Average impact force and the deviation between the three samples and the average.



**<u>Fig.2</u>**: Impact force represented for each sample of each formulation.

c) Contact angle

|   | Contact<br>angle<br>water<br>(°) | Contact<br>angle<br>diiodo<br>(°) | Total<br>Surface<br>Energy<br>(mN/m) |
|---|----------------------------------|-----------------------------------|--------------------------------------|
| Α | 77.2                             | 68                                | 33.15                                |
| В | 84.1                             | 64.7                              | 31.15                                |
| С | 76.1                             | 57.4                              | 37.57                                |
| D | 82.7                             | 64.1                              | 32.00                                |
| E | 92.4                             | 64.9                              | 28.19                                |
| F | 62.8                             | 44                                | 49.27                                |
| G | 59.5                             | 36.8                              | 53.38                                |
| Н | 65                               | 45                                | 47.71                                |
| I | 55.5                             | 40                                | 54.60                                |
| J | 93.1                             | 64.3                              | 28.31                                |
| K | 92.3                             | 63.6                              | 28.82                                |
| L | 93                               | 63.8                              | 28.57                                |
| М | 93.9                             | 66.2                              | 27.2                                 |

<u>Table 5</u>: Contact angle for each liquid (water and diiodo) and total surface energy for each coating.

#### 4) Conclusion

It can be conclued that the compound Vitolane AZ increases the hydrophobicity of the coating. The formulation B seems to have the best behaviour during the impact tests, and the formulation E have the best behaviour for the abrasion. The coating E is more hydrophobic than the coating reference A, and its resistance to impact is quite good.

Formulation E had the best overall properties and contained 9 wt% Vitolane AZ.



Fig.3: Total surface energy measured for each coating and pictures of the drop of water and diiodo methane which lead to the contact angle measurement

|         | Formulation (wt %) |               |                |       |       |        |     | Coating |              |                      | Impact testing            |                                            | Taber testing                                                                    |                                                   | Contact<br>Angle                    |           |                                      |
|---------|--------------------|---------------|----------------|-------|-------|--------|-----|---------|--------------|----------------------|---------------------------|--------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------|-----------|--------------------------------------|
| Name    | SR494              | Vitolane<br>A | Vitolane<br>AZ | CN132 | SR454 | SR9003 | 184 | BP      | Coating date | Number of<br>samples | UV cure<br>passes/%<br>UV | Nb of panel<br>deterioration<br>25/06/2012 | Average<br>Impact<br>potential<br>energy<br>(J.s <sup>2</sup> .m <sup>-1</sup> ) | Deviation<br>(J.s <sup>2</sup> .m <sup>-1</sup> ) | Average<br>(Taber<br>Wear<br>Index) | Deviation | Total<br>Surface<br>Energy<br>(mN/m) |
| 21116/A | 9                  | 0             | 0              | 27    | 27    | 27     | 5   | 5       | 18/06/2012   | 7                    | 5/ 65%                    | 0                                          | 0.387                                                                            | 0.036                                             | 1.9                                 | 0.62      | 33.15                                |
| 21116/B | 6                  | 3             | 0              | 27    | 27    | 27     | 5   | 5       | 18/06/2012   | 7                    | 5/ 65%                    | 0                                          | 0.390                                                                            | 0.007                                             | 2.7                                 | 1.38      | 31.15                                |
| 21116/C | 3                  | 6             | 0              | 27    | 27    | 27     | 5   | 5       | 19/06/2012   | 7                    | 5/ 65%                    | 0                                          | 0.307                                                                            | 0.009                                             | 3.9                                 | 0.37      | 37.57                                |
| 21116/D | 0                  | 9             | 0              | 27    | 27    | 27     | 5   | 5       | 19/06/2012   | 7                    | 5/ 65%                    | 0                                          | 0.273                                                                            | 0.018                                             | 16.9                                | 0.76      | 32.00                                |
| 21116/E | 0                  | 0             | 9              | 27    | 27    | 27     | 5   | 5       | 19/06/2012   | 7                    | 5/ 65%                    | 0                                          | 0.283                                                                            | 0.016                                             | 0.8                                 | 0.53      | 28.19                                |
| 21116/F | 0                  | 15            | 0              | 25    | 25    | 25     | 5   | 5       | 20/06/2012   | 7                    | 5/ 65%                    | 1                                          | 0.213                                                                            | 0.016                                             |                                     |           | 49.27                                |
| 21116/G | 0                  | 20            | 0              | 23.3  | 23.3  | 23.3   | 5   | 5       | 20/06/2012   | 7                    | 5/ 65%                    | 1                                          | 0.197                                                                            | 0.011                                             |                                     |           | 53.38                                |
| 21116/H | 0                  | 25            | 0              | 21.7  | 21.7  | 21.7   | 5   | 5       | 20/06/2012   | 7                    | 5/ 65%                    | 2                                          | 0.137                                                                            | 0.051                                             |                                     |           | 47.71                                |
| 21116/I | 0                  | 30            | 0              | 20    | 20    | 20     | 5   | 5       | 21/06/2012   | 7                    | 5/ 65%                    | 1                                          | 0.110                                                                            | 0.033                                             |                                     |           | 54.60                                |
| 21116/J | 0                  | 0             | 15             | 25    | 25    | 25     | 5   | 5       | 21/06/2012   | 7                    | 5/ 65%                    | 0                                          | 0.240                                                                            | 0.040                                             | 3.4                                 | 1.00      | 28.31                                |
| 21116/K | 0                  | 0             | 20             | 23.3  | 23.3  | 23.3   | 5   | 5       | 21/06/2012   | 7                    | 5/ 65%                    | 0                                          | 0.293                                                                            | 0.036                                             | 1.8                                 | 1.45      | 28.82                                |
| 21116/L | 0                  | 0             | 25             | 21.7  | 21.7  | 21.7   | 5   | 5       | 21/06/2012   | 7                    | 5/ 65%                    | 0                                          | 0.233                                                                            | 0.024                                             | 3.6                                 | 2.00      | 28.57                                |
| 21116/M | 0                  | 0             | 30             | 20    | 20    | 20     | 5   | 5       | 22/06/2012   | 7                    | 5/ 65%                    | 1                                          | 0.293                                                                            | 0.031                                             | 2.1                                 | 0.84      | 27.2                                 |

# Appendix I: Summary Chart

Formulation which gives the best adhesion Formulation which gives the best abrasion resistance Formulations which gives a dis-bonding coating



## Appendix II: Average impact potential energy and Taber wear index for the different coating formulations